Dickkopf-1 regulates gastrulation movements by coordinated modulation of Wnt/βcatenin and Wnt/PCP activities, through interaction with the Dally-like homolog Knypek

Author:

Caneparo Luca,Huang Ya-Lin,Staudt Nicole,Tada Masasumi,Ahrendt Reiner,Kazanskaya Olga,Niehrs Christof,Houart Corinne

Abstract

Dickkopf-1 (Dkk1) is a secreted protein that negatively modulates the Wnt/βcatenin pathway. Lack of Dkk1 function affects head formation in frog and mice, supporting the idea that Dkk1 acts as a “head inducer” during gastrulation. We show here that lack of Dkk1 function accelerates internalization and rostral progression of the mesendoderm and that gain of function slows down both internalization and convergence extension, indicating a novel role for Dkk1 in modulating these movements. The motility phenotype found in the morphants is not observed in embryos in which the Wnt/βcatenin pathway is overactivated, and that dominant-negative Wnt proteins are not able to rescue the gastrulation movement defect induced by absence of Dkk1. These data strongly suggest that Dkk1 is acting in a βcatenin independent fashion when modulating gastrulation movements. We demonstrate that the glypican 4/6 homolog Knypek (Kny) binds to Dkk1 and that they are able to functionally interact in vivo. Moreover, Dkk1 regulation of gastrulation movements is kny dependent. Kny is a component of the Wnt/planar cell polarity (PCP) pathway. We found that indeed Dkk1 is able to activate this pathway in both Xenopus and zebrafish. Furthermore, concomitant alteration of the βcatenin and PCP activities is able to mimic the morphant accelerated cell motility phenotype. Our data therefore indicate that Dkk1 regulates gastrulation movement through interaction with LRP5/6 and Kny and coordinated modulations of Wnt/βcatenin and Wnt/PCP pathways.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3