Metabolic Modeling of Cystic Fibrosis Airway Communities Predicts Mechanisms of Pathogen Dominance

Author:

Henson Michael A.,Orazi Giulia,Phalak Poonam,O’Toole George A.ORCID

Abstract

AbstractCystic fibrosis (CF) is a fatal genetic disease characterized by chronic lung infections due to aberrant mucus production and the inability to clear invading pathogens. The traditional view that CF infections are caused by a single pathogen has been replaced by the realization that the CF lung usually is colonized by a complex community of bacteria, fungi and viruses. To help unravel the complex interplay between the CF lung environment and the infecting microbial community, we developed a community metabolic model comprised of the 17 most abundant bacterial taxa, which account for >95% of reads across samples, from three published studies in which 75 sputum samples from 46 adult CF patients were analyzed by 16S rRNA gene sequencing. The community model was able to correctly predict high abundances of the “rare” pathogens Enterobacteriaceae, Burkholderia and Achromobacter in three patients whose polymicrobial infections were dominated by these pathogens. With these three pathogens were removed, the model correctly predicted that the remaining 43 patients would be dominated by Pseudomonas and/or Streptococcus. This dominance was predicted to be driven by relatively high monoculture growth rates of Pseudomonas and Streptococcus as well as their ability to efficiently consume amino acids, organic acids and alcohols secreted by other community members. Sample-by-sample heterogeneity of community composition could be qualitatively captured through random variation of the simulated metabolic environment, suggesting that experimental studies directly linking CF lung metabolomics and 16S sequencing could provide important insights into disease progression and treatment efficacy.ImportanceCystic fibrosis (CF) is a genetic disease in which chronic airway infections and lung inflammation result in respiratory failure. CF airway infections are usually caused by bacterial communities that are difficult to eradicate with available antibiotics. Using species abundance data for clinically stable adult CF patients assimilated from three published studies, we developed a metabolic model of CF airway communities to better understand the interactions between bacterial species and between the bacterial community and the lung environment. Our model predicted that clinically-observed CF pathogens could establish dominance over other community members across a range of lung nutrient conditions. Heterogeneity of species abundances across 75 patient samples could be predicted by assuming that sample-to-sample heterogeneity was attributable to random variations in the CF nutrient environment. Our model predictions provide new insights into the metabolic determinants of pathogen dominance in the CF lung and could facilitate the development of improved treatment strategies.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3