Elucidation of ion effects on the Thermodynamics of RNA Folding

Author:

Denesyuk Natalia A.,Thirumalai D.

Abstract

AbstractHow ions affect RNA folding thermodynamics and kinetics is an important but a vexing problem that remains unsolved. Experiments have shown that the free energy change, ΔG(c), of RNA upon folding varies with the salt concentration (c) as, ΔG(c) = kc ln c + const, where the coefficient kc is proportional to the difference in the uptake of ions (ion preferential coefficient), ΔΓ, between the folded and unfolded states. We performed simulations of a coarse-grained model, by modeling electrostatic interactions implicitly and with explicit representation of ions, to elucidate the molecular underpinnings of the relationship between folding free energy and ion preferential coefficient. Without any input from experiments, the simulations quantitatively reproduce the heat capacity for the −1 frame shifting pseudoknot (PK) from Beet Western Yellow Virus, thus validating the model. We show that ΔG(c) calculated directly from ΔΓ varies linearly with ln c (c < 0.2M), for a hairpin and the PK, thus demonstrating a molecular link between the two quantities for RNA molecules that undergo substantial conformational changes during folding. Explicit ion simulations also show the linear dependence of ΔG(c) on ln c at all c with kc = 2kBT, except that ΔG(c) values are shifted by about 2 kcal/mol higher than experiments at all salt concentrations. The discrepancy is due to an underestimate the Γ values for both the folded and unfolded states, while giving accurate values for ΔΓ. The predictions for the salt dependence of ΔΓ are amenable to test using single molecule pulling experiments. Our simulations, representing a significant advance in quantitatively describing ion effects in RNA, show that the framework provided here can be used to obtain accurate thermodynamics of RNA folding.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3