The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in vitro models of the human blood–brain barrier

Author:

Buzhdygan Tetyana P.,DeOre Brandon J.,Baldwin-Leclair Abigail,McGary Hannah,Razmpour Roshanak,Galie Peter A.ORCID,Potula RaghavaORCID,Andrews Allison M.ORCID,Ramirez Servio H.ORCID

Abstract

ABSTRACTAs researchers across the globe have focused their attention on understanding SARS-CoV-2, the picture that is emerging is that of a virus that has serious effects on the vasculature in multiple organ systems including the cerebral vasculature. Observed effects on the central nervous system includes neurological symptoms (headache, nausea, dizziness), fatal microclot formation and in rare cases encephalitis. However, our understanding of how the virus causes these mild to severe neurological symptoms and how the cerebral vasculature is impacted remains unclear. Thus, the results presented in this report explored whether deleterious outcomes from the SARS-COV-2 viral spike protein on primary human brain microvascular endothelial cells (hBMVECs) could be observed. First, using postmortem brain tissue, we show that the angiotensin converting enzyme 2 or ACE2 (a known binding target for the SARS-CoV-2 spike protein), is expressed throughout various caliber vessels in the frontal cortex. Additionally, ACE2 was also detectable in primary human brain microvascular endothelial (hBMVEC) maintained under cell culture conditions. Analysis for cell viability revealed that neither the S1, S2 or a truncated form of the S1 containing only the RBD had minimal effects on hBMVEC viability within a 48hr exposure window. However, when the viral spike proteins were introduced into model systems that recapitulate the essential features of the Blood-Brain Barrier (BBB), breach to the barrier was evident in various degrees depending on the spike protein subunit tested. Key to our findings is the demonstration that S1 promotes loss of barrier integrity in an advanced 3D microfluid model of the human BBB, a platform that most closely resembles the human physiological conditions at this CNS interface. Subsequent analysis also showed the ability for SARS-CoV-2 spike proteins to trigger a pro-inflammatory response on brain endothelial cells that may contribute to an altered state of BBB function. Together, these results are the first to show the direct impact that the SARS-CoV-2 spike protein could have on brain endothelial cells; thereby offering a plausible explanation for the neurological consequences seen in COVID-19 patients.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3