Convergence of cortical types and functional motifs in the mesiotemporal lobe

Author:

Paquola CaseyORCID,Benkarim Oualid,DeKraker Jordan,Lariviere Sara,Frässle Stefan,Royer Jessica,Tavakol Shahin,Valk SofieORCID,Bernasconi Andrea,Bernasconi Neda,Khan Ali,Evans Alan,Razi Adeel,Smallwood Jonathan,Bernhardt BorisORCID

Abstract

AbstractThe parahippocampus-hippocampus complex in the mesiotemporal lobe (MTL) is implicated in many different cognitive processes, is compromised in numerous disorders, and exhibits a unique cytoarchitectural transition from six-layered isocortex to three-layered allocortex. Our study leveraged an ultra-high-resolution histological reconstruction of a human brain to (i) develop a continuous surface model of the MTL iso-to-allocortex transition and (ii) quantitatively characterise the region’s cytoarchitecture. We projected the model into the native space of in vivo functional magnetic resonance imaging of healthy adults to (iii) construct a generative model of its intrinsic circuitry and (iv) determine its relationship with distributed functional dynamics of macroscale isocortical fluctuations. We provide evidence that the most prominent axis of cytoarchitectural differentiation of the MTL follows infolding from iso-to-allocortex and is defined by depth-specific variations in neuron density. Intrinsic effective connectivity exhibited a more complex relationship to MTL geometry, varying across both iso-to-allocortical and anterior-posterior axes. Variation along the long axis of the MTL was associated with differentiation between transmodal and unimodal systems, with anterior regions linked to transmodal cortex. In contrast, the iso-to-allocortical gradient was associated with the multiple demand system, with isocortex linked to regions activated when task demands prohibit the use of prior knowledge. Our findings establish a novel model of the MTL, in which its broad influence on neural function emerges through the combination micro- and macro-scale structural features.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3