Rapid and robust directed differentiation of mouse epiblast stem cells into definitive endoderm and forebrain organoids

Author:

Medina-Cano Daniel,Corrigan Emily K.,Glenn Rachel,Islam Mohammed,Lin Yuan,Kim Juliet,Cho Hyunwoo,Vierbuchen ThomasORCID

Abstract

ABSTRACTDirected differentiation of pluripotent stem cells (PSCs) is a powerful model system for deconstructing embryonic development. Although mice are the most advanced mammalian model system for genetic studies of embryonic development, state-of-the-art protocols for directed differentiation of mouse PSCs into defined lineages tend to be slower and generate target cell types with lower purity than analogous protocols for human PSCs, limiting their application as models for mechanistic studies of development. Here, we examine the potential of mouse epiblast stem cells (EpiSCs) cultured in media containing Wnt pathway inhibitors (primed ground state conditions) as a starting point for directed differentiation. As a proof-of-concept, we focused our efforts on two specific cell/tissue types that have proven difficult to generate efficiently and reproducibly from mouse embryonic stem cells: definitive endoderm and neural organoids. First, we developed a new protocol that can rapidly generate nearly pure definitive endoderm from EpiSCs. Second, we developed a protocol for generating forebrain organoids that model the development of prethalamic and hippocampal neurons. These significantly improved differentiation models present new possibilities for combining mouse genetic tools and resources with in vitro differentiation to characterize the molecular and cellular mechanisms of embryonic development.SUMMARY STATEMENTNew optimized protocols for directed differentiation of mouse epiblast stem cells into definitive endoderm and forebrain-patterned organoids.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3