Developing A Deep Learning Natural Language Processing Algorithm For Automated Reporting Of Adverse Drug Reactions

Author:

McMaster ChristopherORCID,Chan JuliaORCID,Liew David FLORCID,Su ElizabethORCID,Frauman Albert G,Chapman Wendy WORCID,Pires Douglas EVORCID

Abstract

AbstractThe detection of adverse drug reactions (ADRs) is critical to our understanding of the safety and risk-benefit profile of medications. With an incidence that has not changed over the last 30 years, ADRs are a significant source of patient morbidity, responsible for 5-10% of acute care hospital admissions worldwide. Spontaneous reporting of ADRs has long been the standard method of reporting, however this approach is known to have high rates of under-reporting, a problem that limits pharmacovigilance efforts. Automated ADR reporting presents an alternative pathway to increase reporting rates, although this may be limited by over-reporting of other drug-related adverse events.We developed a deep learning natural language processing algorithm to identify ADRs in discharge summaries at a single academic hospital centre. Our model was developed in two stages: first, a pre-trained model (DeBERTa) was further pre-trained on 150,000 unlabelled discharge summaries; secondly, this model was fine-tuned to detect ADR mentions in a corpus of 861 annotated discharge summaries. To ensure that our algorithm could differentiate ADRs from other drug-related adverse events, the annotated corpus was enriched for both validated ADR reports and confounding drug-related adverse events using. The final model demonstrated good performance with a ROC-AUC of 0.934 (95% CI 0.931 - 0.955) for the task of identifying discharge summaries containing ADR mentions.

Publisher

Cold Spring Harbor Laboratory

Reference34 articles.

1. Prodigy · an annotation tool for AI, machine learning & NLP. https://prodi.gy/. Accessed: 2021-12-1.

2. E. Alsentzer , J. R. Murphy , W. Boag , W.-H. Weng , D. Jin , T. Naumann , and M. B. A. McDermott . Publicly available clinical BERT embeddings. Apr. 2019.

3. Australian Government Department of Health. Therapeutic Goods Administration. Provisional approval pathway: prescription medicines. https://www.tga.gov.au/provisional-approval-pathway-prescription-medicines. Accessed: 2021-12-1.

4. J. Devlin , M.-W. Chang , K. Lee , and K. Toutanova . BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

5. Automatic Detection of Acute Bacterial Pneumonia from Chest X-ray Reports

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3