Alveoli form directly by budding led by a single epithelial cell

Author:

Gillich AstridORCID,St. Julien Krystal R.,Brownfield Douglas G.ORCID,Travaglini Kyle J.ORCID,Metzger Ross J.ORCID,Krasnow Mark A.ORCID

Abstract

AbstractOxygen passes along the ramifying branches of the lung’s bronchial tree and enters the blood through millions of tiny, thin-walled gas exchange sacs called alveoli. Classical histological studies have suggested that alveoli arise late in development by a septation process that subdivides large air sacs into smaller compartments. Although a critical role has been proposed for contractile myofibroblasts, the mechanism of alveolar patterning and morphogenesis is not well understood. Here we present the three-dimensional cellular structure of alveoli, and show using single-cell labeling and deep imaging that an alveolus in the mouse lung is composed of just 2 epithelial cells and a total of a dozen cells of 7 different types, each with a remarkable, distinctive structure. By mapping alveolar development at cellular resolution at a specific position in the branch lineage, we find that alveoli form surprisingly early by direct budding of epithelial cells out from the airway stalk between enwrapping smooth muscle cells that rearrange into a ring of 3-5 myofibroblasts at the alveolar base. These alveolar entrance myofibroblasts are anatomically and developmentally distinct from myofibroblasts that form the thin fiber partitions of alveolar complexes (‘partitioning’ myofibroblasts). The nascent alveolar bud is led by a single alveolar type 2 (AT2) cell following selection from epithelial progenitors; a lateral inhibitory signal transduced by Notch ensures selection of only one cell so its trailing neighbor acquires AT1 fate and flattens into the cup-shaped wall of the alveolus. Our analysis suggests an elegant new model of alveolar patterning and formation that provides the foundation for understanding the cellular and molecular basis of alveolar diseases and regeneration.One Sentence SummaryWe report a direct budding mechanism of alveolar development distinct from the classical model of subdivision (‘septation’) of large air sacs.

Publisher

Cold Spring Harbor Laboratory

Reference98 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3