Asymmetric Structure of the Native Rhodobacter sphaeroides Dimeric LH1-RC Complex

Author:

Tani K.,Kanno R.,Kikuchi R.,Kawamura S.,Nagashima K. V. P.,Hall M.,Takahashi A.,Yu L.-J.,Kimura Y.,Madigan M. T.,Mizoguchi A.,Humbel B. M.,Wang-Otomo Z.-Y.

Abstract

AbstractThe light-harvesting-reaction center (LH1-RC) core complex of purple photosynthetic bacterium Rhodobacter (Rba.) sphaeroides is characterized by the presence of both a dimeric form and a monomeric form. Following structure determination of the monomeric LH1-RC including its previously unrecognized component designated protein-U (Nat. Commun. 12, 6300, 2021), here we present cryo-EM structures of the dimeric LH1-RC from native Rba. sphaeroides IL106 at 2.75 Å resolution and from an LH1-RC monomer lacking protein-U (ΔU) at 2.64 Å resolution. The native dimeric core complex reveals many asymmetric features in the arrangement of its two monomeric components including the structural integrity of protein-U, the overall LH1 organization, and the rigidities of the proteins and pigments that form the complex. PufX polypeptides play a critical role in connecting two monomers, with one PufX interacting at its N-terminus with another PufX and an LH1 β-polypeptide in another monomer, in good agreement with biochemical analyses. One of the proteins-U was only partially identified in the dimeric structure, signaling significantly different degrees of disorder in the two monomers. The ΔU LH1-RC monomer revealed a half-moon-shaped structure containing 11 α- and 10 β-polypeptides (compared with 14 of each in the wild type), indicating a critical role for protein-U in controlling the number of αβ-subunits required for correct assembly and stabilization of the LH1-RC dimer. The structural features are discussed in relation to the unusual topology of intracytoplasmic photosynthetic membranes and an assembly model proposed for the native Rba. sphaeroides dimeric LH1-RC complex in membranes of wild-type cells.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3