A Leak-Free Head-Out Plethysmography System to Accurately Assess Lung Function in Mice

Author:

Bruggink StephanieORCID,Kentch Kyle,Kronenfeld JasonORCID,Renquist Benjamin J.ORCID

Abstract

AbstractMice are a valuable model for elegant studies of complex, systems-dependent diseases, including pulmonary diseases. Current tools to assess lung function in mice are either terminal or lack accuracy. We set out to develop a low-cost, accurate, head-out variable-pressure plethysmography system to allow for repeated, non-terminal measurements of lung function in mice. Current head-out plethysmography systems are limited by air leaks that prevent accurate measures of volume and flow. We designed an inflatable cuff that encompasses the mouse’s neck preventing air leak. We wrote corresponding software to collect and analyze the data, remove movement artifacts, and automatically calibrate each dataset. This software calculates inspiratory/expiratory volume, inspiratory/expiratory time, breaths per minute, enhanced pause, mid-expiratory flow, and end-inspiratory pause. To validate the use, we established our plethysmography system accurately measured tidal breathing, the bronchoconstrictive response to methacholine, sex and age associated changes in breathing, and breathing changes associated with house dust mite sensitization. Our estimates of volume, flow, and timing of breaths are in line with published estimates, we observed dose-dependent decreases in volume and flow in response to methacholine (P < 0.05), increased lung volume and decreased breathing rate with aging (P < 0.05), and that house dust mite sensitization decreased tidal volume and flow (P <0.05) while exacerbating the methacholine induced increases in inspiratory and expiratory time (P < 0.05). We describe an accurate, sensitive, low-cost, head-out plethysmography system that allows for longitudinal studies of pulmonary disease in mice.New & NoteworthyWe describe a variable-pressure head-out plethysmography system that can be used to assess lung function in mice. A balloon cuff that inflates around the mouse’s neck prevents air leak, allowing for accurate measurements of lung volume and air flow. Custom software facilitates system calibration, removes movement artifacts, and eases data analysis. The system was validated by measuring tidal breathing, responses to methacholine, and changes associated with house dust mite sensitization, sex, and aging.Contributions to StudyStephanie Bruggink: development of head-out plethysmography chamber, measurement of breathing, data analysis, prepared manuscriptKyle Kentch: development of head-out plethysmography chamber, programmed software to collect and analyze data, prepared manuscriptJason Kronenfeld: development of tools to analyze data, analysis of dataBenjamin Renquist: development of head-out plethysmography chamber, statistical analysis, prepared manuscript

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3