DNase-seq: A High-Resolution Technique for Mapping Active Gene Regulatory Elements across the Genome from Mammalian Cells

Author:

Song Lingyun,Crawford Gregory E.

Abstract

INTRODUCTIONIdentification of active gene regulatory elements is a key to understanding transcriptional control governing biological processes such as cell-type specificity, differentiation, development, proliferation, and response to the environment. Mapping DNase I hypersensitive (HS) sites has historically been a valuable tool for identifying all different types of regulatory elements, including promoters, enhancers, silencers, insulators, and locus control regions. This method utilizes DNase I to selectively digest nucleosome-depleted DNA (presumably by transcription factors), whereas DNA regions tightly wrapped in nucleosome and higher-order structures are more resistant. The traditional low-throughput method for identifying DNase I HS sites uses Southern blots. Here, we describe the complete and improved protocol for DNase-seq, a high-throughput method that identifies DNase I HS sites across the whole genome by capturing DNase-digested fragments and sequencing them by high-throughput, next-generation sequencing. In a single experiment, DNase-seq can identify most active regulatory regions from potentially any cell type, from any species with a sequenced genome.

Publisher

Cold Spring Harbor Laboratory

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 449 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3