Development of a Synthetic Biosensor for Chemical Exchange MRI UtilizingIn SilicoOptimized Peptides

Author:

Fillion Adam J.ORCID,Bricco Alexander R.,Lee Harvey D.,Korenchan David,Farrar Christian T.,Gilad Assaf A.ORCID

Abstract

1AbstractChemical Exchange Saturation Transfer (CEST) magnetic resonance imaging (MRI) has been identified as a novel alternative to classical diagnostic imaging. Over the last several decades, many studies have been conducted to determine possible CEST agents, such as endogenously expressed compounds or proteins, that can be utilized to produce contrast with minimally invasive procedures and reduced or non-existent levels of toxicity. In recent years there has been an increased interest in the generation of genetically engineered CEST contrast agents, typically based on existing proteins with CEST contrast or modified to produce CEST contrast. We have developed anin-silicomethod for the evolution of peptide sequences to optimize CEST contrast and showed that these peptides could be combined to createde novobiosensors for CEST MRI. A single protein, superCESTide 2.0, was designed to be 198 amino acids. SuperCESTide 2.0 was expressed inE. coliand purified with size-exclusion chromatography. The magnetic transfer ratio asymmetry (MTRasym) generated by superCESTide 2.0 was comparable to levels seen in previous CEST reporters, such as protamine sulfate (salmon protamine, SP), Poly-L-Lysine (PLL), and human protamine (hPRM1). This data shows that novel peptides with sequences optimizedin silicofor CEST contrast that utilizes a more comprehensive range of amino acids can still produce contrast when assembled into protein units expressed in complex living environments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3