Humoral and T-cell-mediated responses to a pre-clinical Zika vaccine candidate that utilizes a unique insect-specific flavivirus platform

Author:

Porier Danielle L.,Adam Awadalkareem,Kang Lin,Michalak Pawel,Tupik Juselyn,Santos Matthew A.,Lee Christy,Allen Irving C.,Wang Tian,Auguste Albert J.

Abstract

ABSTRACTVaccination is critical for the control and prevention of viral outbreaks, yet conventional vaccine platforms may involve trade-offs between immunogenicity and safety. Insect-specific viruses have emerged as a novel vaccine platform to overcome this challenge. Detailed studies of humoral and T-cell responses induced by new insect-specific flavivirus (ISFV)-based vaccine platforms are needed to better understand correlates of protection and improve vaccine efficacy. Previously, we used a novel ISFV called Aripo virus (ARPV) to create a Zika virus (ZIKV) vaccine candidate (designated ARPV/ZIKV). ARPV/ZIKV demonstrated exceptional safety and single-dose efficacy, completely protecting mice from a lethal ZIKV challenge. Here, we explore the development of immune responses induced by ARPV/ZIKV immunization and evaluate its correlates of protection. Passive transfer of ARPV/ZIKV-induced immune sera to naïve mice prior to challenge emphasized the importance of neutralizing antibodies as a correlate of protection. Depletion of T-cells in vaccinated mice and adoptive transfer of ARPV/ZIKV-primed T-cells to naïve mice prior to challenge indicated that ARPV/ZIKV-induced CD4+and CD8+T-cell responses contribute to the observed protection but may not be essential for protection during ZIKV challenge. However, vaccination of Rag1 KO, Tcra KO, and muMtmice demonstrated the critical role for ARPV/ZIKV-induced T-cells in developing protective immune responses following vaccination. Overall, both humoral and T-cell-mediated responses induced by ISFV-based vaccines are important for comprehensive immunity, and ISFV platforms continue to be a promising method for future vaccine development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3