Dimerization and autophosphorylation of the MST family of kinases are controlled by the same set of residues

Author:

Weingartner Kyler A.,Tran Thao,Tripp Katherine W.,Kavran Jennifer M.ORCID

Abstract

ABSTRACTThe Hippo pathway controls tissue growth and regulates stem cell fate through the activities of core kinase cassette that begins with the Sterile 20-like kinase MST1/2. Activation of MST1/2 relies ontrans-autophosphorylation but the details of the mechanisms regulating that reaction are not fully elucidated. Proposals include dimerization as a first step and include multiple models for potential kinase-domain dimers. Efforts to verify and link these dimers totrans-autophosphorylation were unsuccessful. We explored the link between dimerization andtrans-autophosphorylation for MST2 and the entire family of MST kinases. We analyzed crystal lattice contacts of structures of MST kinases and identified an ensemble of kinase-domain dimers compatible withtrans-autophosphorylation. These dimers share a common dimerization interface comprised of the activation loop and αG-helix while the arrangements of the kinase-domains within the dimer varied depending on their activation state. We then verified the dimerization interface and determined its function using MST2. Variants bearing alanine substitutions of the αG-helix prevented dimerization of the MST2 kinase domain both in solution and in cells. These substitutions also blocked autophosphorylation of full-length MST2 and itsDrosophilahomolog Hippo in cells. These variants retain the same secondary structure as wild-type and capacity to phosphorylate a protein substrate, indicating the loss of MST2 activation can be directly attributed to a loss of dimerization rather than loss of either fold or catalytic function. Together this data functionally links dimerization and autophosphorylation for MST2 and suggests this activation mechanism is conserved across both species and the entire MST family.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3