The selective estrogen receptor modulator clomiphene inhibits sterol biosynthesis inArabidopsis thaliana

Author:

Wang Qing,De Vriese KjellORCID,Desmet SandrienORCID,Pollier JacobORCID,Lu Qing,Goossens AlainORCID,Geelen DannyORCID,Russinova EugeniaORCID,Goeminne GeertORCID,Beeckman TomORCID,Vanneste SteffenORCID

Abstract

AbstractSterols are produced via complex, multistep biosynthetic pathways involving similar enzymatic conversions in plants, animals and fungi, yielding a variety of sterol metabolites with slightly different chemical properties to exert diverse and specific functions. The role of plant sterols has been studied in the context of cell biological processes, signaling and overall plant development, mainly based on mutants. Due to their essential nature, genetic interference with their function causes pleiotropic developmental defects. An important alternative is to use a pharmacological approach. However, the current toolset for manipulating sterol biosynthesis in plants remains limited. Here, we probed a collection of inhibitors of mammalian cholesterol biosynthesis to identify new inhibitors of plant sterol biosynthesis. We provide evidence that imidazole-type fungicides, bifonazole, clotrimazole and econazole inhibit the obtusifoliol 14α-demethylase CYP51, that is highly conserved among eukaryotes. Surprisingly, we found that the selective estrogen receptor modulator, clomiphene, inhibits sterol biosynthesis, in part by inhibiting the plant-specific cyclopropyl-cycloisomerase CPI1. These results demonstrate that rescreening of the animal sterol biosynthesis pharmacology is an easy approach for identifying novel inhibitors of plant sterol biosynthesis. Such molecules can be used as entry points for the development of plant-specific inhibitors of sterol biosynthesis that can be used in agriculture.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3