Structural and thermodynamic consequences of base pairs containing pseudouridine and N1-methylpseudouridine in RNA duplexes

Author:

Dutta Nivedita,Deb Indrajit,Sarzynska Joanna,Lahiri Ansuman

Abstract

ABSTRACTPseudouridine (Ψ) is one of the most common post-transcriptional modifications in RNA and has been known to play significant roles in several crucial biological processes. The N1-methyl derivative of pseudouridine i.e N1-methylpseudouridine has also been reported to be important for the stability and function of RNA. Several studies suggest the importance of pseudouridine and N1-methylpseudouridine in mRNA therapeutics. The critical contribution of pseudouridine, especially that of its N1-methyl derivative in the efficiency of the COVID-19 mRNA vaccines, suggests the requirement to better understand the role of these modifications in the structure, stability and function of RNA. In the present study, we have investigated the consequences of the presence of these modifications in the stability of RNA duplex structures by analyzing different structural properties, hydration characteristics and energetics of these duplexes. We have previously studied the structural and thermodynamic properties of RNA duplexes with an internal Ψ-A pair and reported the stabilizing effect of Ψ over U (Deb, I. et al.Sci Rep9, 16278 (2019)). Here, we have extended our work to understand the properties of RNA duplexes with an internal m1Ψ-A pair and also theoretically demonstrate the effect of substituting internal U-G, U-U and U-C mismatches with the Ψ-G, Ψ-U and Ψ-C mismatches and also with the m1Ψ-G, m1Ψ-U and m1Ψ-C mismatches respectively, within dsRNA. Our results indicate the context-dependent stabilization of base stacking interactions by N1-methylpseudouridine compared to uridine and pseudouridine, presumably resulting from the increased molecular polarizability due to the presence of the methyl group.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3