Coupling enzymatic activity and gating in an ancient TRPM chanzyme and its molecular evolution

Author:

Huang YiheORCID,Lü WeiORCID,Du JuanORCID

Abstract

AbstractThe canonical ion channels gated by chemical ligands use the free energy of agonist binding to open the channel pore, returning to a closed state upon agonist departure. A unique class of ion channels, known as channel-enzymes (chanzymes), possess additional enzymatic activity that is directly or indirectly linked to their channel function. Here we investigated a TRPM2 chanzyme from choanoflagellates, an evolutionary ancestor of all metazoan TRPM channels, which integrates two seemingly incompatible functions into a single peptide: a channel module activated by ADP ribose (ADPR) with high open probability and an enzyme module (NUDT9-H domain) consuming ADPR at a remarkably slow rate. Using time-resolved cryo- electron microscopy (cryo-EM), we captured a complete series of structural snapshots of the gating and catalytic cycles, revealing the coupling mechanism between channel gating and enzymatic activity. Our results showed that the slow kinetics of the NUDT9-H enzyme module confers a novel self-regulatory mechanism, whereby the enzyme module modulates channel gating in a binary manner. Binding of ADPR to NUDT9-H first triggers tetramerization of the enzyme modules, promoting channel opening, while the subsequent hydrolysis reaction reduces local ADPR availability, inducing channel closure. This coupling enables the ion-conducting pore to alternate rapidly between open and closed states, avoiding Mg2+and Ca2+overload. We further demonstrated how the NUDT9-H domain has evolved from a structurally semi-independent ADPR hydrolase module in early species TRPM2 to a fully integrated component of a gating ring essential for channel activation in advanced species TRPM2. Our study demonstrated an example of how organisms can adapt to their environments at the molecular level.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3