Inhibition mechanism and antiviral activity of an α-ketoamide based SARS-CoV-2 main protease inhibitor

Author:

Chen Xiaoxin,Huang Xiaodong,Ma Qinhai,Kuzmič Petr,Zhou Biao,Xu Jinxin,Liu Bin,Jiang Haiming,Zhang Wenjie,Yang Chunguang,Wu Shiguan,Huang Jianzhou,Li Haijun,Long Chaofeng,Zhao Xin,Xu Hongrui,Sheng Yanan,Guo Yaoting,Niu Chuanying,Xue Lu,Xu Yong,Liu Jinsong,Zhang Tianyu,Spencer James,Deng Wenbin,Chen Shu-Hui,Xiong Xiaoli,Yang Zifeng,Zhong Nanshan

Abstract

AbstractSARS-CoV-2 has demonstrated extraordinary ability to evade antibody immunity by antigenic drift. Small molecule drugs may provide effective therapy while being part of a solution to circumvent SARS-CoV-2 immune escape. In this study we report an α-ketoamide based peptidomimetic inhibitor of SARS-CoV-2 main protease (Mpro), RAY1216. Enzyme inhibition kinetic analysis established that RAY1216 is a slow-tight inhibitor with aKi of 8.6 nM; RAY1216 has a drug-target residence time of 104 min compared to 9 min of PF-07321332 (nirmatrelvir), the antiviral component in Paxlovid, suggesting that RAY1216 is approximately 12 times slower to dissociate from the protease-inhibitor complex compared to PF-07321332. Crystal structure of SARS-CoV-2 Mpro:RAY1216 complex demonstrates that RAY1216 is covalently attached to the catalytic Cys145 through the α-ketoamide warhead; more extensive interactions are identified between bound RAY1216 and Mproactive site compared to PF-07321332, consistent with a more stable acyl-enzyme inhibition complex for RAY1216. In cell culture and human ACE2 transgenic mouse models, RAY1216 demonstrates comparable antiviral activities towards different SARS-CoV-2 virus variants compared to PF-07321332. Improvement in pharmacokinetics has been observed for RAY1216 over PF-07321332 in various animal models, which may allow RAY1216 to be used without ritonavir. RAY1216 is currently undergoing phase III clinical trials (https://clinicaltrials.gov/ct2/show/NCT05620160) to test real-world therapeutic efficacy against COVID-19.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3