A novel localization based biosensor, SEDAR, visualizes spatio-temporal dynamics of activated Ras in endogenous Drosophila tissues

Author:

Changede Rishita

Abstract

AbstractChemokine signaling via growth factor receptor tyrosine kinases (RTKs) regulates development, differentiation, growth and disease implying that it is involved in a myriad of cellular processes. A single RTK, for example the Epidermal Growth Factor Receptor (EGFR), is used repeatedly for a multitude of developmental programs. Quantitative differences in magnitude and duration of RTK signaling can bring about different signaling outcomes. Understanding this complex RTK signals requires real time visualization of the signal. To visualize spatio-temporal signaling dynamics, a biosensor called SEnsitive Detection of Activated Ras (SEDAR) was developed. It is a localization-based sensor that binds to activated Ras directly downstream of the endogenous activated RTKs. This binding was reversible and SEDAR expression did not cause any detectable perturbation of the endogenous signal. Using SEDAR, endogenous guidance signaling was visualized during RTK mediated chemotaxis of border cells in Drosophila ovary. SEDAR localized to both the leading and rear end of the cluster but polarized at the leading edge of the cluster. Perturbation of RTKs that led to delays in forward migration of the cluster correlated with loss of SEDAR polarization in the cluster. Gliding or tumbling behavior of border cells was a directly related to the high or low magnitude of SEDAR polarization respectively, in the leading cell showing that signal polarization at the plasma membrane provided information for the migratory behavior. Further, SEDAR localization to the plasma membrane detected EGFR mediated signaling in five distinct developmental contexts. Hence SEDAR, a novel biosensor could be used as a valuable tool to study the dynamics of endogenous Ras activation in real time downstream of RTKs, in three-dimensional tissues, at an unprecedented spatial and temporal resolution.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3