Arpin deficiency increases actomyosin contractility and vascular permeability

Author:

Montoya-García Armando,Guerrero-Fonseca Idaira M.,Chánez-Paredes Sandra D.,Hernández-Almaraz Karina B.,León-Vega Iliana I.,Silva-Olivares Angélica,Bentazos Abigail,Mondragón-Castelán Mónica,Mondragón-Flores Ricardo,Salinas-Lara Citlaltepetl,Vargas-Robles Hilda,Schnoor MichaelORCID

Abstract

ABSTRACTArpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in HUVEC causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage and vascular congestion, increased F-actin levels and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.SUMMARYThe expression and functions of arpin in endothelial cells are unknown. We show that arpin controls actomyosin contractility and endothelial barrier integrity in an Arp2/3-independent manner via ROCK1/ZIPK. Arpin-deficient mice are viable, but also show increased basal and induced vascular permeability.Graphical abstract.Current working model for arpin functions in ECs.Under basal conditions arpin is located throughout the cell and enriched at cellular junctions. During inflammation, arpin is downregulated causing the formation of actomyosin actin stress fibers, junction disruption, and increased permeability. Question mark indicates the hitherto unknown mechanism of how arpin controls the activity of ROCK and ZIPK to induce the formation of contractile actin stress fibers.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3