Identification of targets for drug repurposing to treat COVID-19 using a Deep Learning Neural Network

Author:

Wang Si-HanORCID,Tang Yu-Hsuan,Hsu Hao,Yu Chu-Nien,Leea Oscar Kuang-ShengORCID

Abstract

AbstractThe COVID-19 pandemic has resulted in a global public health crisis requiring immediate acute therapeutic solutions. To address this challenge, we developed a useful tool deep learning model using the graph-embedding convolution network (GECN) algorithm. Our approach identified COVID-19-related genes and potential druggable targets, including tyrosine kinase ABL1/2, pro-inflammatory cytokine CSF2, and pro-fibrotic cytokines IL-4 and IL-13. These target genes are implicated in critical processes related to COVID-19 pathogenesis, including endosomal membrane fusion, cytokine storm, and tissue fibrosis. Our analysis revealed that ABL kinase inhibitors, lenzilumab (anti-CSF2), and dupilumab (anti-IL4Rα) represent promising therapeutic solutions that can effectively block virus-host membrane fusion or attenuate hyperinflammation in COVID-19 patients. Compared to the traditional drug screening process, our GECN algorithm enables rapid analysis of disease-related human protein interaction networks and prediction of candidate drug targets from a large-scale knowledge graph in a cost-effective and efficient manner. Overall, Overall, our results suggest that the model has the potential to facilitate drug repurposing and aid in the fight against COVID-19.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3