Genomic and metabolic plasticity drive alternative scenarios for adaptingPseudomonas putidato non-native substrate D-xylose

Author:

Dvořák PavelORCID,Burýšková Barbora,Popelářová Barbora,Ebert BirgittaORCID,Botka TiborORCID,Bujdoš Dalimil,Sánchez-Pascuala Alberto,Schöttler Hannah,Hayen HeikoORCID,Lorenzo Víctor deORCID,Blank Lars M.ORCID,Benešík Martin

Abstract

AbstractD-Xylose, a major constituent of plant biomass and second most abundant sugar on Earth, holds a considerable potential as a substrate for sustainable bio-production. Pseudomonas putida KT2440 is an attractive bacterial host for valorizing biogenic feedstocks but lacks a xylose utilization pathway. While several attempts to engineer P. putida for growth on xylose have been reported, a comprehensive understanding of xylose metabolism in this bacterium is lacking, hindering its further improvement and rational tailoring for specific biotechnological purposes. In this study, we elucidated the xylose metabolism in the genome-reduced P. putida strain, EM42, endowed with xylose isomerase pathway (xylAB) and transporter (xylE) from Escherichia coli and used the obtained knowledge in combination with adaptive laboratory evolution to accelerate the bacterium’s growth on the pentose sugar. Carbon flux analyses, targeted gene knock-outs, and in vitro enzyme assays portrayed xylose assimilation in P. putida and confirmed a partially cyclic upper xylose metabolism. Deletion of the local transcriptional regulator gene hexR de-repressed genes of several key catabolic enzymes and reduced the lag phase on xylose. Guided by metabolic modeling, we augmented P. putida with additional heterologous pentose phosphate pathway genes and subjected rationally prepared strains to adaptive laboratory evolution (ALE) on xylose. The descendants showed accelerated growth and reduced growth lag. Genomic and proteomic analysis of engineered and evolved mutants revealed the importance of a large genomic re-arrangement, transaldolase overexpression, and balancing gene expression in the synthetic xylABE operon. Importantly, omics analyses found that similar growth characteristics of two superior mutants were achieved through distinct evolutionary paths. This work provides a unique insight into how cell metabolism adjusts to a non-native substrate; it highlights the remarkable genomic and metabolic plasticity of P. putida and demonstrates the power of combining knowledge-driven engineering with ALE in generating desirable microbial phenotypes.HighlightsElucidated xylose catabolism via exogenous isomerase pathway inP. putidaEM42.Deletion of transcriptional regulator HexR improved growth on xylose.Knowledge-guided interventions and adaptive evolution accelerated growth.Omics analyses of selected mutants highlighted the genomic and metabolic plasticity ofP. putida.Two mutants with superior characteristics emerged from distinct evolutionary paths.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3