Identification and quantification of transposable element transcripts using Long-Read RNA-seq inDrosophilagermline tissues

Author:

Rebollo RitaORCID,Gerenton Pierre,Cumunel Eric,Mary Arnaud,Sabot FrançoisORCID,Burlet Nelly,Gillet Benjamin,Hughes SandrineORCID,Oliveira Daniel S.ORCID,Goubert ClémentORCID,Fablet Marie,Vieira CristinaORCID,Lacroix Vincent

Abstract

AbstractTransposable elements (TEs) are repeated DNA sequences potentially able to move throughout the genome. In addition to their inherent mutagenic effects, TEs can disrupt nearby genes by donating their intrinsic regulatory sequences, for instance, promoting the ectopic expression of a cellular gene. TE transcription is therefore not only necessary for TE transposition per se but can also be associated with TE-gene fusion transcripts, and in some cases, be the product of pervasive transcription. Hence, correctly determining the transcription state of a TE copy is essential to apprehend the impact of the TE in the host genome. Methods to identify and quantify TE transcription have mostly relied on short RNA-seq reads to estimate TE expression at the family level while using specific algorithms to discriminate copy-specific transcription. However, assigning short reads to their correct genomic location, and genomic feature is not trivial. Here we retrieved full-length cDNA (TeloPrime, Lexogen) ofDrosophila melanogastergonads and sequenced them using Oxford Nanopore Technologies. We show that long-read RNA-seq can be used to identify and quantify transcribed TEs at the copy level. In particular, TE insertions overlapping annotated genes are better estimated using long reads than short reads. Nevertheless, long TE transcripts (> 4.5 kb) are not well captured. Most expressed TE insertions correspond to copies that have lost their ability to transpose, and within a family, only a few copies are indeed expressed. Long-read sequencing also allowed the identification of spliced transcripts for around 105 TE copies. Overall, this first comparison of TEs between testes and ovaries uncovers differences in their transcriptional landscape, at the subclass and insertion level.

Publisher

Cold Spring Harbor Laboratory

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3