Assessing changes in incubation period, serial interval, and generation time of SARS-CoV-2 variants of concern: a systematic review and meta-analysis

Author:

Xu Xiangyanyu,Wu Yanpeng,Kummer Allisandra G.,Zhao Yuchen,Hu Zexin,Wang Yan,Liu Hengcong,Ajelli Marco,Yu Hongjie

Abstract

AbstractBackgroundAfter the first COVID-19 wave caused by the ancestral lineage, the pandemic has been fueled from the continuous emergence of new SARS-CoV-2 variants. Understanding key time-to-event periods for each emerging variant of concern is critical as it can provide insights into the future trajectory of the virus and help inform outbreak preparedness and response planning. Here, we aim to examine how the incubation period, serial interval, and generation time have changed from the ancestral SARS-CoV-2 lineage to different variants of concern.MethodsWe conducted a systematic review and meta-analysis that synthesized the estimates of incubation period, serial interval, and generation time (both realized and intrinsic) for the ancestral lineage, Alpha, Beta, and Omicron variants of SARS-CoV-2.ResultsOur study included 274 records obtained from 147 household studies, contact tracing studies or studies where epidemiological links were known. With each emerging variant, we found a progressive shortening of each of the analyzed key time-to-event periods. Specifically, we found that Omicron had the shortest pooled estimates for the incubation period (3.63 days, 95%CI: 3.25-4.02 days), serial interval (3.19 days, 95%CI: 2.95-3.43 days), and realized generation time (2.96 days, 95%CI: 2.54-3.38 days) whereas the ancestral lineage had the highest pooled estimates for each of them. We also observed shorter pooled estimates for the serial interval compared to the incubation period across the virus lineages. We found considerable heterogeneities (I2> 80%) when pooling the estimates across different virus lineages, indicating potential unmeasured confounding from population factors (e.g., social behavior, deployed interventions).ConclusionOur study supports the importance of conducting contact tracing and epidemiological investigations to monitor changes in SARS-CoV-2 transmission patterns. Our findings highlight a progressive shortening of the incubation period, serial interval, and generation time, which can lead to epidemics that spread faster, with larger peak incidence, and harder to control. We also consistently found a shorter serial interval than incubation period, suggesting that a key feature of SARS-CoV-2 is the potential for pre-symptomatic transmission. These observations are instrumental to plan for future COVID-19 waves.

Publisher

Cold Spring Harbor Laboratory

Reference188 articles.

1. WHO Coronavirus (COVID-19) Dashboard [ https://covid19.who.int/]

2. Tracking SARS-CoV-2 variants [ https://www.who.int/activities/tracking-SARS-CoV-2-variants/]

3. Lessons from SARS-CoV-2 in India: A data-driven framework for pandemic resilience

4. SARS-CoV-2 variant Delta rapidly displaced variant Alpha in the United States and led to higher viral loads;Cell Reports Medicine,2022

5. Aleem A , Akbar Samad AB , Vaqar S. Emerging Variants of SARS-CoV-2 And Novel Therapeutics Against Coronavirus (COVID-19): StatPearls Publishing, Treasure Island (FL); 2023.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3