FBH1 deficiency sensitizes cells to WEE1 inhibition by promoting mitotic catastrophe

Author:

Jennings Lucy,Walters Heather Andrews,Mason Jennifer M.ORCID

Abstract

ABSTRACTWEE1 kinase phosphorylates CDK1 and CDK2 to regulate origin firing and mitotic entry. Inhibition of WEE1 has become an attractive target for cancer therapy due to the simultaneous induction of replication stress and inhibition of the G2/M checkpoint. WEE1 inhibition in cancer cells with high levels of replication stress results in induction of replication catastrophe and mitotic catastrophe. To increase potential as a single agent chemotherapeutic, a better understanding of genetic alterations that impact cellular responses to WEE1 inhibition is warranted. Here, we investigate the impact of loss of the helicase, FBH1, on the cellular response to WEE1 inhibition. FBH1-deficient cells have a reduction in ssDNA and double strand break signaling indicating FBH1 is required for induction of replication stress response in cells treated with WEE1 inhibitors. Despite the defect in the replication stress response, FBH1-deficiency sensitizes cells to WEE1 inhibition by increasing mitotic catastrophe. We propose loss of FBH1 is resulting in replication-associated damage that requires the WEE1-dependent G2 checkpoint for repair.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3