Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome

Author:

Anderson Brady G.ORCID,Raskind AlexanderORCID,Hissong Rylan,Dougherty Michael K.,McGill Sarah K.,Gulati Ajay,Theriot Casey M.ORCID,Kennedy Robert T.ORCID,Evans Charles R.ORCID

Abstract

ABSTRACTCompound identification is an essential task in the workflow of untargeted metabolomics since the interpretation of the data in a biological context depends on the correct assignment of chemical identities to the features it contains. Current techniques fall short of identifying all or even most observable features in untargeted metabolomics data, even after rigorous data cleaning approaches to remove degenerate features are applied. Hence, new strategies are required to annotate the metabolome more deeply and accurately. The human fecal metabolome, which is the focus of substantial biomedical interest, is a more complex, more variable, yet lesser-investigated sample matrix compared to widely studied sample types like human plasma. This manuscript describes a novel experimental strategy using multidimensional chromatography to facilitate compound identification in untargeted metabolomics. Pooled fecal metabolite extract samples were fractionated using offline semi-preparative liquid chromatography. The resulting fractions were analyzed by an orthogonal LC-MS/MS method, and the data were searched against commercial, public, and local spectral libraries. Multidimensional chromatography yielded more than a 3-fold improvement in identified compounds compared to the typical single-dimensional LC-MS/MS approach and successfully identified several rare and novel compounds, including atypical conjugated bile acid species. Most features identified by the new approach could be matched to features that were detectable but not identifiable in the original single-dimension LC-MS data. Overall, our approach represents a powerful strategy for deeper annotation of the metabolome that can be implemented with commercially-available instrumentation, and should apply to any dataset requiring deeper annotation of the metabolome.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3