FOXK2amplification and overexpression promotes breast cancer development and chemoresistance

Author:

Yu Yang,Cao Wen-Ming,Cheng FengORCID,Shi Zhongcheng,Han Lili,Yi Jin-Ling,da Silva Edaise M,Dopeso Higinio,Chen Hui,Yang Jianhua,Wang Xiaosong,Zhang Chunchao,Zhang Hong

Abstract

AbstractActivation of oncogenes through DNA amplification/overexpression plays an important role in cancer initiation and progression. Chromosome 17 has many cancer-associated genetic anomalies. This cytogenetic anomaly is strongly associated with poor prognosis of breast cancer.FOXK2gene is located on 17q25 and encodes a transcriptional factor with a forkhead DNA binding domain. By integrative analysis of public genomic datasets of breast cancers, we found thatFOXK2is frequently amplified and overexpressed in breast cancers. FOXK2 overexpression in breast cancer patients is associated with poor overall survival.FOXK2knockdown significantly inhibits cell proliferation, invasion and metastasis, and anchorage-independent growth, as well as causes G0/G1 cell cycle arrest in breast cancer cells. Moreover, inhibition of FOXK2 expression sensitizes breast cancer cells to frontline anti-tumor chemotherapies. More importantly, co-overexpression of FOXK2 and PI3KCA with oncogenic mutations (E545K or H1047R) induces cellular transformation in non-tumorigenic MCF10A cells, suggesting thatFOXK2is an oncogene in breast cancer and is involved in PI3KCA-driven tumorigenesis. Our study identifiedCCNE2,PDK1, and Estrogen receptor alpha (ESR1) as direct transcriptional targets of FOXK2 in MCF-7 cells. Blocking CCNE2- and PDK1-mediated signaling by using small molecule inhibitors has synergistic anti-tumor effects in breast cancer cells. Furthermore, FOXK2 inhibition by gene knockdown or inhibitors for its transcriptional targets (CCNE2 and PDK1) in combination with PI3KCA inhibitor, Alpelisib, showed synergistic anti-tumor effects on breast cancer cells with PI3KCA oncogenic mutations. In summary, we provide compelling evidence that FOXK2 plays an oncogenic role in breast tumorigenesis and targeting FOXK2-mediated pathways may be a potential therapeutic strategy in breast cancer.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3