Suppression of tumor cell lactate-generating signaling pathways eradicates murine PTEN/p53-deficient aggressive-variant prostate cancer via macrophage phagocytosis

Author:

Chaudagar Kiranj,Hieromnimon Hanna M.,Kelley Anne,Labadie Brian,Shafran Jordan,Rameshbabu Srikrishnan,Drovetsky Catherine,Bynoe Kaela,Solanki Ani,Markiewicz Erica,Fan Xiaobing,Loda Massimo,Patnaik Akash

Abstract

ABSTRACTPurposePTEN loss-of-function/PI3K pathway hyperactivation occurs in ∼50% of metastatic, castrate-resistant prostate cancer patients, resulting in poor therapeutic outcomes and resistance to immune checkpoint inhibitors across multiple malignancies. Our prior studies in prostate-specific PTEN/p53-deleted genetically engineered mice (Pb-Cre;PTENfl/flTrp53fl/flGEM) with aggressive-variant prostate cancer (AVPC) demonstrated feedback Wnt/β-catenin signaling activation in 40% mice resistant to androgen deprivation therapy (ADT)/PI3K inhibitor (PI3Ki)/PD-1 antibody (aPD-1) combination, resulting in restoration of lactate cross-talk between tumor-cells and tumor-associated macrophages (TAM), histone lactylation (H3K18lac) and phagocytic suppression within TAM. Here, we targeted immunometabolic mechanism(s) of resistance to ADT/PI3Ki/aPD-1 combination, with the goal of durable tumor control in PTEN/p53-deficient PC.Experimental designPb-Cre;PTENfl/flTrp53fl/flGEM were treated with either ADT (degarelix), PI3Ki (copanlisib), aPD-1, MEK inhibitor (trametinib) or Porcupine inhibitor (LGK 974) as single agents or their combinations. MRI was used to monitor tumor kinetics and immune/proteomic profiling/ex vivoco-culture mechanistic studies were performed on prostate tumors or established GEM-derived cell lines.ResultsWe tested whether Wnt/β-catenin pathway inhibition with LGK 974 addition to degarelix/copanlisib/aPD-1 therapy enhances tumor control in GEM, and observedde novoresistance due to feedback activation of MEK signaling. Based on our observation that degarelix/aPD-1 treatment resulted in partial inhibition of MEK signaling, we substituted trametinib for degarelix/aPD-1 treatment, and observed a durable tumor growth control of PI3Ki/MEKi/PORCNi in 100% mice via H3K18lac suppression and complete TAM activation within TME.ConclusionsAbrogation of lactate-mediated cross-talk between cancer cells and TAM results in durable ADT-independent tumor control in PTEN/p53-deficient AVPC, and warrants further investigation in clinical trials.STATEMENT OF TRANSLATIONAL RELEVANCEPTEN loss-of-function occurs in ∼50% of mCRPC patients, and associated with poor prognosis, and immune checkpoint inhibitor resistance across multiple malignancies. Our prior studies have demonstrated that ADT/PI3Ki/PD-1 triplet combination therapy controls PTEN/p53-deficient PC in 60% of mice via enhancement of TAM phagocytosis. Here, we discovered that resistance to ADT/PI3K/PD-1 therapy occurred via restoration of lactate production via feedback Wnt/MEK signaling following treatment with PI3Ki, resulting in inhibition of TAM phagocytosis. Critically, co-targeting of PI3K/MEK/Wnt signaling pathways using an intermittent dosing schedule of corresponding targeted agents resulted in complete tumor control and significantly prolonged survival without significant long-term toxicity. Collectively, our findings provide “proof-of-concept” that targeting lactate as a macrophage phagocytic checkpoint controls growth of murine PTEN/p53-deficient PC and warrant further investigation in AVPC clinical trials.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3