Information Geometry of the Retinal Representation Manifold

Author:

Ding XuehaoORCID,Lee Dongsoo,Melander Joshua B.,Sivulka George,Ganguli Surya,Baccus Stephen A.

Abstract

AbstractThe ability for the brain to discriminate among visual stimuli is constrained by their retinal representations. Previous studies of visual discriminability have been limited to either low-dimensional artificial stimuli or pure theoretical considerations without a realistic encoding model. Here we propose a novel framework for understanding stimulus discriminability achieved by retinal representations of naturalistic stimuli with the method of information geometry. To model the joint probability distribution of neural responses conditioned on the stimulus, we created a stochastic encoding model of a population of salamander retinal ganglion cells based on a three-layer convolutional neural network model. This model not only accurately captured the mean response to natural scenes but also a variety of second-order statistics. With the model and the proposed theory, we computed the Fisher information metric over stimuli to study the most discriminable stimulus directions. We found that the most discriminable stimulus varied substantially across stimuli, allowing an examination of the relationship between the most discriminable stimulus and the current stimulus. By examining responses generated by the most discriminable stimuli we further found that the most discriminative response mode is often aligned with the most stochastic mode. This finding carries the important implication that under natural scenes, retinal noise correlations are information-limiting rather than increasing information transmission as has been previously speculated. We additionally observed that sensitivity saturates less in the population than for single cells and that as a function of firing rate, Fisher information varies less than sensitivity. We conclude that under natural scenes, population coding benefits from complementary coding and helps to equalize the information carried by different firing rates, which may facilitate decoding of the stimulus under principles of information maximization.

Publisher

Cold Spring Harbor Laboratory

Reference37 articles.

1. Michael Hauser and Asok Ray . Principles of riemannian geometry in neural networks. Advances in neural information processing systems, 30, 2017.

2. Separability and geometry of object manifolds in deep neural networks;Nature communications,2020

3. Hang Shao , Abhishek Kumar , and P Thomas Fletcher . The riemannian geometry of deep generative models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 315–323, 2018.

4. Binxu Wang and Carlos R Ponce . A geometric analysis of deep generative image models and its applications. In International Conference on Learning Representations, 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3