Neuroimaging Signatures of Metacognitive Improvement in Sensorimotor Timing

Author:

Bader Farah,Wiener Martin

Abstract

AbstractError monitoring is an essential human ability underlying learning and metacognition. In the time domain, humans possess a remarkable ability to learn and adapt to temporal intervals, yet the neural mechanisms underlying this are not well understood. Recently, we demonstrated that humans exhibit improvements in sensorimotor time estimates when given the chance to incorporate feedback from a previous trial (Bader and Wiener 2021), suggesting that humans are metacognitively aware of their own timing errors. To test the neural basis of this metacognitive ability, human participants of both sexes underwent fMRI while they performed a visual temporal reproduction task with randomized suprasecond intervals (1-6s). Crucially, each trial was repeated following feedback, allowing a “re-do” to learn from the successes or errors in the initial trial. Behaviorally, we replicated our previous finding that subjects improve their performance on re-do trials despite the feedback being temporally uninformative (i.e. early or late). For neuroimaging, we observed a dissociation between estimating and reproducing time intervals, with the former more likely to engage regions associated with the default mode network (DMN), including the superior frontal gyri, precuneus, and posterior cingulate, whereas the latter activated regions associated traditionally with the “Timing Network” (TN), including the supplementary motor area (SMA), precentral gyrus, and right supramarginal gyrus. Notably, greater DMN involvement was observed in Re-do trials. Further, the extent of the DMN was greater on re-do trials, whereas for the TN it was more constrained. Finally, Task-based connectivity between these networks demonstrated higher inter-network correlation on initial trials, but primarily when estimating trials, whereas on re-do trials communication was higher during reproduction. Overall, these results suggest the DMN and TN work in concert to mediate subjective awareness of one’s sense of time for the purpose of improving timing performance.Significance StatementA finely tuned sense of time perception is imperative for everyday motor actions (e.g., hitting a baseball). Timing self-regulation requires correct assessment and updating duration estimates if necessary. Using a modified version of a classical task of time measurement, we explored the neural regions involved in error detection, time awareness, and learning to time. Reinforcing the role of the SMA in measuring temporal information and providing evidence of co-activation with the DMN, this study demonstrates that the brain overlays sensorimotor timing with a metacognitive awareness of its passage.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3