Humanized nucleosomes reshape replication initiation and rDNA/nucleolar integrity in yeast

Author:

Lazar-Stefanita LucianaORCID,Haase Max A. B.ORCID,Boeke Jef D.ORCID

Abstract

SummaryEukaryotic DNA wraps around histone octamers forming nucleosomes, which modulate genome function by defining chromatin environments with distinct accessibility. These well-conserved properties allowed “humanization” of the nucleosome core particle (NCP) inSaccharomyces cerevisiaeat high fitness costs. Here we studied nucleosome-humanized yeast-genomes to understand how species-specific chromatin affects nuclear organization and function. We found a size increase in human-NCP, linked to shorter free linker DNA, supporting decreased chromatin accessibility. 3-D humanized-genome maps showed increased chromatin compaction and defective centromere clustering, correlated with high chromosomal aneuploidy rate. Site-specific chromatin alterations were associated with lack of initiation of early origins of replication and dysregulation of the ribosomal (rDNA and rRNA) metabolism. This latter led to nucleolar fragmentation and rDNA-array instability, through a non-coding RNA dependent mechanism, leading to its extraordinary, but entirely reversible, intra-chromosomal expansion. Overall, our results reveal species-specific properties of the NCP that define epigenome function across vast evolutionary distances.HighlightsHumanized nucleosomes wrap 10 additional nucleotides, shortening free linker lengthHistone-humanized nucleosomes have increased occupancy for DNAHumanized nucleosomes potentially decrease chromatin accessibility by blocking-out free linker DNANucleosome humanization impedes DNA replication by affecting chromatin structure at originsHumanized nucleosomes reversibly destabilize the ribosomal DNA array and leads to massive intrachromosomal rDNA locus expansionHistone humanization disrupts rDNA silencing and leads to nucleolar fragmentation

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3