A leaky integrate-and-fire computational model based on the connectome of the entire adultDrosophilabrain reveals insights into sensorimotor processing

Author:

Shiu Philip K.ORCID,Sterne Gabriella R.ORCID,Spiller NicoORCID,Franconville Romain,Sandoval Andrea,Zhou Joie,Simha Neha,Kang Chan HyukORCID,Yu SeongbongORCID,Kim Jinseop S.ORCID,Dorkenwald SvenORCID,Matsliah Arie,Schlegel PhilippORCID,Yu Szi-chieh,McKellar Claire E.ORCID,Sterling Amy,Costa MartaORCID,Eichler KatharinaORCID,Jefferis Gregory S.X.E.ORCID,Murthy MalaORCID,Bates Alexander ShakeelORCID,Eckstein NilsORCID,Funke JanORCID,Bidaye Salil S.ORCID,Hampel StefanieORCID,Seeds Andrew M.ORCID,Scott KristinORCID

Abstract

AbstractThe forthcoming assembly of the adultDrosophila melanogastercentral brain connectome, containing over 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain. Here, we create a leaky integrate-and-fire computational model of the entireDrosophilabrain, based on neural connectivity and neurotransmitter identity, to study circuit properties of feeding and grooming behaviors. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation. Computational activation of neurons in the feeding region of theDrosophilabrain predicts those that elicit motor neuron firing, a testable hypothesis that we validate by optogenetic activation and behavioral studies. Moreover, computational activation of different classes of gustatory neurons makes accurate predictions of how multiple taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Our computational model predicts that the sugar and water pathways form a partially shared appetitive feeding initiation pathway, which our calcium imaging and behavioral experiments confirm. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit that do not overlap with gustatory circuits, and accurately describes the circuit response upon activation of different mechanosensory subtypes. Our results demonstrate that modeling brain circuits purely from connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can accurately describe complete sensorimotor transformations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3