Tectonic Complex Impedes Diffusion through the Ciliary Transition Zone to Ensure Proper Sorting of Membrane Proteins

Author:

Truong Hanh M.ORCID,Cruz-Colón Kevin O.,Martínez-Márquez Jorge Y.,Willer Jason R.ORCID,Travis Amanda M.ORCID,Biswas Sondip K.,Lo Woo-KuenORCID,Bolz Hanno J.ORCID,Pearring Jillian N.ORCID

Abstract

ABSTRACTThe primary cilium is a signaling organelle with a unique membrane composition maintained by a diffusional barrier residing at the transition zone. Many transition zone proteins, such as the tectonic complex, are linked to preserving ciliary composition; however, whether these proteins regulate active transport or physically impede membrane diffusion remains unknown. To understand tectonic’s role, we generated a photoreceptor specificTctn1knockout mouse. Loss of Tctn1 resulted in an absence of the entire tectonic complex yet had minimal effects on transition zone structure. Interestingly, we found that protein composition of the photoreceptor cilium was disrupted as non-resident membrane proteins accumulated in the cilium over time, ultimately resulting in photoreceptor degeneration. We further show that membrane proteins moved faster through the transition zone illustrating that the tectonic complex acts as a physical barrier to slow diffusion of membrane proteins so they can be properly sorted by ciliary transport carriers.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3