Fibroblast-specific inflammasome activation predisposes to atrial fibrillation

Author:

Li Luge,Coarfa Cristian,Yuan Yue,Abu-Taha Issam,Wang Xiaolei,Song Jia,Koirala Amrit,Grimm Sandra L,Kamler Markus,Mullany Lisa K,Tallquist Michelle,Nattel Stanley,Dobrev Dobromir,Li Na

Abstract

ABSTRACTBackgroundRecent work has shown that the NLR-family-pyrin-domain-containing 3 (NLRP3) inflammasome is expressed in cardiomyocytes and when specifically activated causes atrial electrical remodeling and arrhythmogenicity. Whether the NLRP3-inflammasome system is functionally important in cardiac fibroblasts (FBs) remains controversial. In this study, we sought to uncover the potential contribution of FB NLRP3-inflammasome signaling to the control of cardiac function and arrhythmogenesis.MethodsDigital-PCR was performed to determine the expression of NLRP3-pathway components in FBs isolated from human biopsy samples of AF and sinus rhythm patients. NLRP3-system protein expression was determined by immunoblotting in atria of canines with electrically maintained AF. Using the inducible, resident fibroblast (FB)-specific Tcf21-promoter-Cre system (Tcf21iCre as control), we established a FB-specific knockin (FB-KI) mouse model with FB-restricted expression of constitutively active NLRP3. Cardiac function and arrhythmia susceptibility in mice were assessed by echocardiography, programmed electrical stimulation, and optical mapping studies.ResultsNLRP3 and IL1B were upregulated in atrial FBs of patients with persistent AF. Protein levels of NLRP3, ASC, and pro-Interleukin-1β were increased in atrial FBs of a canine AF model. Compared with the control mice, FB-KI mice exhibited enlarged left atria (LA) and reduced LA contractility, a common determinant of AF. The FBs from FB-KI mice were more transdifferentiated, migratory, and proliferative compared to the FBs from control mice. FB-KI mice showed increased cardiac fibrosis, atrial gap junction remodeling, and reduced conduction velocity, along with increased AF susceptibility. These phenotypic changes were supported by single nuclei (sn)RNA-seq analysis, which revealed enhanced extracellular matrix remodeling, impaired communication among cardiomyocytes, and altered metabolic pathways across multiple cell types.ConclusionsOur results show that the FB-restricted activation of the NLRP3-inflammasome system leads to fibrosis, atrial cardiomyopathy, and AF. Activation of NLRP3-inflammasome in resident FBs exhibits cell-autonomous function by increasing the activity of cardiac FBs, fibrosis, and connexin remodeling. This study establishes the NLRP3-inflammasome as a novel FB-signaling pathway contributing to AF pathogenesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3