Sampling Bottleneck in Validating Membrane Dynamics

Author:

Doktorova MilkaORCID,Khelashvili George,Brown Michael F.

Abstract

ABSTRACTMolecular dynamics (MD) simulations have become increasingly impactful in membrane biophysics because they offer atomistic resolution into the atomistic fluctuations of lipid assemblies. Validation of the simulation trajectories with experimental data is crucial for interpretation and application of MD results. As an ideal benchmarking technique, NMR spectroscopy delivers order parameters of the carbon−deuterium bond fluctuations along the lipid chains. Additionally, NMR relaxation can access lipid dynamics providing yet another point for validation of simulation force fields. Here we performed short resampling simulations of membrane trajectories to investigate the lipid CH bond fluctuations on sub-40-ps timescales to explore the local fast dynamics. We recently established a robust framework for analysis of NMR relaxation rates from MD simulations, which improves upon current approaches and shows excellent agreement of experimental and theoretical results. The calculation of relaxation rates from simulations presents a universal challenge that we addressed by hypothesizing the existence of fast CH bond dynamics that evade the analysis of simulation data with temporal resolution of 40 ps (or lower). Indeed, our results support this hypothesis confirming the validity of our solution to the sampling problem. Furthermore, we show that the fast CH bond dynamics occur on timescales at which carbon−carbon bond conformations appear nearly stationary and unaffected by cholesterol. Lastly, we discuss the correspondence to the CH bond dynamics of liquid hydrocarbons and relate their existence to the apparent microviscosity of the bilayer hydrocarbon core.STATEMENT OF SIGNIFICANCENuclear magnetic resonance data have been historically used to validate membrane simulations through the average order parameters of the lipid chains. However, the bond dynamics that give rise to this equilibrium bilayer structure have rarely been compared between in vitro and in silico systems despite the availability of substantial experimental data. Here we investigate the logarithmic timescales sampled by the lipid chain motions and confirm a recently developed computational protocol that creates a dynamics-based bridge between simulations and NMR spectroscopy. Our results establish the foundations for validating a relatively unexplored dimension of bilayer behavior and thus have far-reaching applications in membrane biophysics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3