Induction of the heat shock response of E. coli through stabilization of sigma 32 by the phage lambda cIII protein.

Author:

Bahl H,Echols H,Straus D B,Court D,Crowl R,Georgopoulos C P

Abstract

The cIII protein of phage lambda favors the lysogenic response to infection by inhibiting the degradation of the lambda cII protein, which exerts the primary control on the developmental decision for lysis or lysogeny. To study the mechanism and scope of cIII-mediated regulation, we have used plasmid systems to examine the specific effect of cIII overproduction on the growth of Escherichia coli and the synthesis of bacterial proteins. We have found that maximal production of cIII prolongs the heat-induced synthesis of E. coli heat shock proteins and provokes elevated production of heat shock proteins even at low temperature. The overproduction of heat shock proteins is correlated with a rapid inhibition of cell growth, as judged by measurements of optical density. We suggest that an overactive heat shock response inhibits bacterial growth, either because excessive production of one or more of the proteins is highly deleterious or because only heat shock promoters are transcribed efficiently. To examine the effect of cIII on sigma 32, the specificity factor for the heat shock response, we have studied the stability of sigma 32 in cells carrying both cIII- and sigma 32-producing plasmids; the half-life of sigma 32 is increased fourfold in the presence of cIII. We conclude that overproduction of cIII provokes the heat shock response by increasing the steady-state level of active sigma 32. These studies also support the concept that the rate of expression of heat shock proteins is directly correlated with the amount of active sigma 32 and that regulation of the stability of sigma 32 may be an important factor for control of the heat shock response.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3