Pseudomonas aeruginosa TfpW is a multifunctional D-Araf glycosyltransferase and oligosaccharyltransferase

Author:

Villela Anne D.,Harvey Hanjeong,Graham Katherine,Burrows Lori L.

Abstract

ABSTRACTTfpW is an oligosaccharyltransferase that modifies the subunits of type IV pili from group IV strains of Pseudomonas aeruginosa with oligomers of α-1,5-linked-D-arabinofuranose (D-Araf). Besides its oligosaccharyltransferase activity, TfpW may be responsible for periplasmic translocation and polymerization of D-Araf. Here we investigated these potential roles of TfpW in Pa5196 pilin glycosylation. Topology studies confirmed the periplasmic location of loop 1 and the large C-terminus domain, however the central portion of TfpW had an indeterminate configuration. Reconstitution of the Pa5196 pilin glycosylation system by providing pilA, tfpW +/- tfpX and the D-Araf biosynthesis genes PsPA7_6246-6249 showed that TfpW is sufficient for glycan polymerization and transfer to pilins in P. aeruginosa PAO1, while TfpX is also necessary in Escherichia coli. In addition to PsPA7_6246, DprE1 (PsPA7_6248) and DprE2 (PsPA7_6249), the GtrA-like component PsPA7_6247 was required for pilin glycosylation in E. coli versus PAO1. In a PAO1 ΔarnE/F mutant, loss of PsPA7_6247 expression decreased the level of pilin glycosylation, suggesting that arnE/F may play a role in pilin glycosylation when PsPA7_6247 is absent. Bacterial two-hybrid studies showed interactions of TfpW with itself, TfpX, PsPA7_6247 and DprE2, suggesting the formation of a complex that enables efficient pilin glycosylation. Fluorescence microscopy of E. coli and Pa5196ΔdprE1 expressing a DprE1-sGFP fusion showed that the protein is expressed in the cytoplasm, supporting our model that includes cytoplasmic biosynthesis of the lipid carrier-linked D-Araf precursor prior to its periplasmic translocation. Together these data suggest that TfpW may be the first example of a trifunctional flippase, glycosyltransferase, and oligosaccharyltransferase.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3