Low tolerance for transcriptional variation at cohesin genes is accompanied by functional links to disease-relevant pathways

Author:

Schierding WilliamORCID,Horsfield JuliaORCID,O’Sullivan JustinORCID

Abstract

AbstractVariants in DNA regulatory elements can alter the regulation of distant genes through spatial-regulatory connections. In humans, these spatial-regulatory connections are largely set during early development, when the cohesin complex plays an essential role in genome organisation and cell division. A full complement of the cohesin complex and its regulators is important for normal development, since heterozygous mutations in genes encoding these components are often sufficient to produce a disease phenotype. The implication that genes encoding the cohesin complex and cohesin regulators must be tightly controlled and resistant to variability in expression has not yet been formally tested. Here, we identify spatial-regulatory connections with potential to regulate expression of cohesin loci, including linking their expression to that of other genes. Connections that centre on the cohesin ring subunits (Mitotic: SMC1A, SMC3, STAG1, STAG2, RAD21/RAD21-AS; Meiotic: SMC1B, STAG3, REC8, RAD21L1), cohesin-ring support genes (NIPBL, MAU2, WAPL, PDS5A and PDS5B), and CTCF provide evidence of coordinated regulation that has little tolerance for perturbation. We identified transcriptional changes across a set of genes co-regulated with the cohesin loci that include biological pathways such as extracellular matrix production and proteasome-mediated protein degradation. Remarkably, many of the genes that are co-regulated with cohesin loci are themselves intolerant to loss-of-function. The results highlight the importance of robust regulation of cohesin genes, indicating novel pathways that may be important in the human cohesinopathy disorders.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3