Role of combined cell membrane and wall mechanical properties regulated by polarity signals in cell budding

Author:

Tsai KevinORCID,Britton SamuelORCID,Nematbakhsh AliORCID,Zandi RoyaORCID,Chen Weitao,Alber MarkORCID

Abstract

AbstractThe budding yeast, Saccharomyces cerevisiae, is a prime biological model to study mechanisms underlying asymmetric growth. Previous studies have shown that, prior to yeast bud emergence, polarization of a conserved small GTPase, Cdc42, must be established. Additionally, hydrolase changes the mechanical properties of the cell wall and plasma membrane with the periplasm between them (cell surface). However, how the surface mechanical properties in the emerging bud are different from the properties of the mother cell and their role in bud formation are not well understood. We hypothesize that the polarized chemical signal alters the local dimensionless ratio of stretching to bending stiffness of the cell surface of the emerging yeast bud. To test this hypothesis, a novel three-dimensional coarse-grained particle-based model has been developed which describes inhomogeneous mechanical properties of the cell surface. Model simulations suggest that regulation of the dimensionless ratio of stretching to bending stiffness of the cell surface is necessary to initiate bud formation. Furthermore, model simulations predict that bud shape depends strongly on the experimentally observed molecular distribution of the polarized signaling molecule Cdc42, while the neck shape of the emerging bud is strongly impacted by the properties of the chitin and septin ring. This 3D model of asymmetric cell growth can also be used for studying viral budding and other vegetative reproduction processes performed via budding.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3