Clotting factor genes are associated with preeclampsia in high altitude pregnant women in the Peruvian Andes

Author:

Badillo Rivera Keyla M.,Nieves-Colón Maria A.ORCID,Mendoza Karla SandovalORCID,Dávalos Vanessa Villanueva,Enriquez Lencinas Luis E.,Chen Jessica W.ORCID,Zhang Elisa T.ORCID,Sockell Alexandra,Tello Patricia Ortiz,Hurtado Gloria Malena,Salas Ramiro CondoriORCID,Cebrecos Ricardo,Manzaneda Choque José C.,Manzaneda Choque Franz P.,Yábar Pilco Germán P.ORCID,Rawls Erin,Eng Celeste,Huntsman Scott,Burchard Esteban GonzálezORCID,Poletti Giovanni,Gallo CarlaORCID,Bustamante Carlos D.,Baker Julie C.,Gignoux Christopher R.,Wojcik Genevieve L.,Moreno-Estrada AndrésORCID

Abstract

AbstractStudy questionWhat is the genetic basis of preeclampsia in Andean families residing at high altitudes?Summary answerA top candidate region associated with preeclampsia containing clotting factor genes PROZ, F7 and F10 was found on chromosome 13 of the fetal genome in affected Andean families.What is known alreadyPreeclampsia, a multi-organ complication of pregnancy, is a leading cause of maternal morbidity and mortality worldwide. Diagnosed by the onset of maternal hypertension and proteinuria after 20 weeks of gestation, this disorder is a common cause of preterm delivery and affects approximately 5-7% of global pregnancies. The heterogeneity of preeclampsia has posed a challenge in understanding its etiology and molecular basis. However, risk for the condition is known to increase in high altitude regions such as the Peruvian Andes.Study design, size, durationTo investigate the genetic basis of preeclampsia in a high-altitude resident population, we characterized genetic diversity in a cohort of Andean families (N=883) from Puno, Peru, a high-altitude city above 3,500 meters. Our study collected DNA samples and medical records from case-control trios and duos between 2011-2016, thus allowing for measurement of maternal, paternal, and fetal genetic factors influencing preeclampsia risk.Participants/materials, setting, methodsWe generated high-density genotype data for 439,314 positions across the genome, determined ancestry patterns and mapped associations between genetic variants and preeclampsia phenotype. We also conducted fine mapping of potential causal variants in a subset of family participants and tested ProZ protein levels in post-partum maternal and cord blood plasma by ELISA.Main results and the role of chanceA transmission disequilibrium test (TDT) revealed variants near genes of biological importance in pregnancy physiology for placental and blood vessel function. The most significant SNP in this cluster, rs5960 (p<6×10−6) is a synonymous variant in the clotting factor F10. Two other members of the coagulation cascade, F7 and PROZ, are also in the top associated region. However, we detected no difference of PROZ levels in maternal or umbilical cord plasma.Limitations, reasons for cautionOur genome-wide association analysis (GWAS) was limited by a small sample size and lack of functional follow up. Our ELISA was limited to post-natal blood sampling (only samples collected immediately after birth). But, despite a small sample size, our family based GWAS design permits identification of novel significant and suggestive associations with preeclampsia. Further longitudinal studies could analyze clotting factor levels and activity in other pregnant cohorts in Peru to assess the impact of thrombosis in preeclampsia risk among Andean highlanders.Wider implications of the findingsThese findings support previous evidence suggesting that coagulation plays an important role in the pathology of preeclampsia and potentially underlies susceptibility to other pregnancy disorders exacerbated at high altitudes. This discovery of a novel association related to a functional pathway relevant to pregnancy biology in an understudied population of Native American origin demonstrates the increased power of family-based study design and underscores the importance of conducting genetic research in diverse populations.Study funding/competing interest(s)This work was supported in part by the National Science Foundation (NSF) Graduate Research Fellowship Program Grant No. DGE–1147470 awarded to K.M.B.R. (fellow no. 2014187481); NSF SBE Postdoctoral Research Fellowship Award No. 1711982 awarded to M.N.C.; an A.P. Giannini Foundation postdoctoral fellowship, a Stanford Child Health Research Institute postdoctoral award, and a Stanford Dean’s Postdoctoral Fellowship awarded to E.T.Z.; the Chan Zuckerberg Biohub Investigator Award to C.D.B; a Burroughs Welcome Prematurity Initiative Award to J.C.B.; the George Rosenkranz Prize for Health Care Research in Developing Countries, and the International Center for Genetic Engineering and Biotechnology (ICGEB, Italy) grant CRP/ MEX15-04_EC, and Mexico’s CONACYT grant FONCICYT/50/2016, each awarded to A.M.E. Further funding was provided by the Sandler Family Foundation, the American Asthma Foundation, the RWJF Amos Medical Faculty Development Program, Harry Wm. and Diana V. Hind Distinguished Professor in Pharmaceutical Sciences II, National Institutes of Health, National Heart, Lung, and Blood Institute Awards R01HL117004, R01HL128439, R01HL135156, R01HL141992, National Institute of Health and Environmental Health Sciences Awards R01ES015794, R21ES24844, the National Institute on Minority Health and Health Disparities Awards R01MD010443, and R56MD013312, and the National Human Genome Research Institute Award U01HG009080, each awarded to E.G.B. Author J.W.C. is currently a full-time employee at Genentech, Inc. and hold stocks in Roche Holding AG. Author E.G.B. reports grants from the National Institute of Health, Lung, Blood Institute, the National Institute of Health, General Medical Sciences, the National Institute on Minority Health and Health Disparities, the Tobacco-Related Disease Research Program, the Food and Drug Administration, and the Sandler Family Foundation, during the conduct of the study.Trial registration numberN/A*for MESH terms see PubMed at http://www.ncbi.nlm.nih.gov/pubmed/

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3