Abstract
AbstractThe preservation of genome integrity during sperm and egg development is vital for reproductive success. During meiosis, the tumor suppressor BRCA1/BRC-1 and structural maintenance of chromosomes 5/6 (SMC-5/6) complex genetically interact to promote high fidelity DNA double strand break (DSB) repair, but the specific DSB repair outcomes these proteins regulate remain unknown. Here we show that BRCA1/BRC-1 and the SMC-5/6 complex limit intersister crossover recombination as well as error-prone repair pathways during meiotic prophase I. Using genetic and cytological methods to monitor repair of DSBs with different repair partners in Caenorhabditis elegans, we demonstrate that both BRC-1 and SMC-5/6 repress intersister crossover recombination events, with meiotic cells becoming more dependent upon these proteins to repair DSBs in late meiotic prophase I. Sequencing of conversion tracts from homolog-independent DSB repair events indicates that BRC-1 regulates intersister/intrachromatid noncrossover conversion tract length. Moreover, we find that BRC-1 also specifically inhibits error prone repair of DSBs induced at mid-pachytene. Finally, we reveal that functional BRC-1 enhances DSB repair defects in smc-5 mutants by repressing theta-mediated end joining (TMEJ). Taken together, our study illuminates the coordinate interplay of BRC-1 and SMC-5/6 to regulate DSB repair outcomes in the germline.
Publisher
Cold Spring Harbor Laboratory
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献