Phage-plasmids spread antibiotic resistance genes through infection and lysogenic conversion

Author:

Pfeifer EugenORCID,A. Bonnin RémyORCID,Rocha Eduardo P.C.ORCID

Abstract

AbstractAntibiotic resistance is rapidly spreading by horizontal transfer of resistance genes in mobile genetic elements. While plasmids are key drivers of this process, very few integrative phages encode antibiotic resistance genes. Here, we find that phage-plasmids, elements that are both phages and plasmids, often carry antibiotic resistance genes. We found 60 phage-plasmids with 184 antibiotic resistance genes, including broad-spectrum-cephalosporins, carbapenems, aminoglycosides, fluoroquinolones and colistin. These genes are in a few hotspots, seem to have been co-translocated with transposable elements, and are often in class I integrons, which had not been previously found in phages. We tried to induce six phage-plasmids with resistance genes (including four with resistance integrons) and succeeded in five cases. Other phage-plasmids and integrative prophages were co-induced in these experiments. As a proof of principle, we focused on a P1-like element encoding an extended spectrum β-lactamase, blaCTX-M-55. After induction, we confirmed that it’s capable to infect and convert four other E. coli strains. Its re-induction led to further conversion of a sensitive strain, confirming it’s a fully functional phage. This study shows that phage-plasmids carry a large diversity of clinically relevant antibiotic resistance genes that they transfer across bacteria. As plasmids, these elements seem very plastic and capable of acquiring genes from other plasmids. As phages, they may provide novel paths of transfer for resistance genes, because they can infect bacteria distant in time and space from the original host. As a matter of alarm, they may also eventually mediate transfer to other types of phages.ImportanceDissemination of antimicrobial resistances is a major threat to global health. Here, we show that a group of temperate bacterial viruses (=phages), termed phage-plasmids, commonly encode different and multiple types of resistance genes of high clinical importance, often in integrons. This is unexpected since phages typically do not carry resistance genes and, hence, do not confer their hosts with resistance upon infection and genome integration. Our experiments with phage-plasmids isolated from clinical settings confirmed they infect sensitive strains, rendering them antibiotic resistant. The spread of antibiotic resistance genes by phage-plasmids is worrisome because it dispenses cell-to-cell contact, necessary for the canonical plasmid transfer (=conjugation). Furthermore, their integrons are now genetic platforms for the acquisition of novel resistance genes.

Publisher

Cold Spring Harbor Laboratory

Reference76 articles.

1. Defining and combating antibiotic resistance from One Health and Global Health perspectives;Nat Microbiol,2019

2. Emerging antibiotic resistance: carbapenemase-producing enterobacteria. Bad new bugs, still no new drugs;Infez Med,2019

3. Bacterial characteristics of carbapenem-resistant Enterobacteriaceae (CRE) colonized strains and their correlation with subsequent infection;BMC Infect Dis,2021

4. Overcoming Resistance to β-Lactam Antibiotics

5. Genetic Diversity, Biochemical Properties, and Detection Methods of Minor Carbapenemases in Enterobacterales;Front Med (Lausanne),2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3