Edition of complex gene families in tobacco with GoldenBraid 4.0, a multipurpose web-based platform for plant genome engineering

Author:

Vazquez-Vilar MartaORCID,Garcia-Carpintero Víctor,Selma Sara,Bernabé-Orts Joan M,Sanchez-Vicente Javier,Salazar-Sarasua Blanca,Ressa Arianna,de Paola Carmine,Ajenjo María,Fernández-del-Carmen Asun,Granell Antonio,Orzáez DiegoORCID

Abstract

ABSTRACTCRISPR/Cas ability to target several loci simultaneously (multiplexing) is a game-changer in plant breeding. Multiplexing not only accelerates trait pyramiding but also can unveil traits hidden by functional redundancy in polyploid crops. Furthermore, multiplexing enhances dCas-based programmable gene expression and enables cascade-like gene regulation. However, multiplex constructs comprising tandemly arrayed gRNAs are difficult to assemble, this hampering more widespread use. Here we present a comprehensive upgrade of the popular cloning platform GoldenBraid (GB), in which, on top of its classical multigene cloning software, we integrate new assembly tools for two-dimensions gRNA multiplexing with both Cas9 and Cas12a, using the gRNA-tRNA-spaced and the gRNA unspaced approaches, respectively. As functional validation, we show, among others, the assembly of up to 17 tandemly-arrayed gRNAs constructs against a subset of the Squamosa-Promoter Binding Protein-Like (SPL) gene family in tobacco. With these constructs we generated a collection of Cas9-free SPL mutants harboring up to 9 biallelic mutations in a single generation. The functionality of GB-assembled dCas9 and dCas12a-based CRISPR activators and repressors using single and multiplexing gRNAs is also validated. With the incorporation of the new CRISPR tools and part’s collection, GB4.0 turns an unprecedentedly comprehensive open platform for plant genetic engineering.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plant synthetic biology: from inspiration to augmentation;Current Opinion in Biotechnology;2023-02

2. Strong and tunable anti‐CRISPR/Cas activities in plants;Plant Biotechnology Journal;2021-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3