Emergence and spread of a SARS-CoV-2 variant through Europe in the summer of 2020

Author:

Hodcroft Emma B.ORCID,Zuber Moira,Nadeau SarahORCID,Vaughan Timothy G.ORCID,Crawford Katharine H. D.ORCID,Althaus Christian L.ORCID,Reichmuth Martina L.ORCID,Bowen John E.ORCID,Walls Alexandra C.,Corti Davide,Bloom Jesse D.ORCID,Veesler DavidORCID,Mateo David,Hernando Alberto,Comas IñakiORCID,González Candelas FernandoORCID,Stadler TanjaORCID,Neher Richard A.ORCID,

Abstract

Following its emergence in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic resulting in unprecedented efforts to reduce transmission and develop therapies and vaccines (WHO Emergency Committee, 2020; Zhu et al., 2020). Rapidly generated viral genome sequences have allowed the spread of the virus to be tracked via phylogenetic analysis (Worobey et al., 2020; Hadfield et al., 2018; Pybus et al., 2020). While the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced, allowing continent-specific variants to emerge. However, within Europe travel resumed in the summer of 2020, and the impact of this travel on the epidemic is not well understood. Here we report on a novel SARS-CoV-2 variant, 20E (EU1), that emerged in Spain in early summer, and subsequently spread to multiple locations in Europe. We find no evidence of increased transmissibility of this variant, but instead demonstrate how rising incidence in Spain, resumption of travel across Europe, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions and quarantine requirements, we estimate 20E (EU1) was introduced hundreds of times to countries across Europe by summertime travellers, likely undermining local efforts to keep SARS-CoV-2 cases low. Our results demonstrate how a variant can rapidly become dominant even in absence of a substantial transmission advantage in favorable epidemiological settings. Genomic surveillance is critical to understanding how travel can impact SARS-CoV-2 transmission, and thus for informing future containment strategies as travel resumes.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the first pandemic where the spread of a viral pathogen has been globally tracked in near real-time using phylogenetic analysis of viral genome sequences (Worobey et al., 2020; Hadfield et al., 2018; Pybus et al., 2020). SARS-CoV-2 genomes continue to be generated at a rate far greater than for any other pathogen and more than 500,000 full genomes are available on GISAID as of February 2020 (Shu and McCauley, 2017).In addition to tracking the viral spread, these genome sequences have been used to monitor mutations which might change the transmission, pathogenesis, or anti-genic properties of the virus. One mutation in particular, D614G in the spike protein, has received much attention. This variant (Nextstrain clade 20A) seeded large outbreaks in Europe in early 2020 and subsequently dominated the outbreaks in the Americas, thereby largely replacing previously circulating lineages. This rapid rise led to the suggestion that this variant is more transmissible, which has since been corroborated by phylogenetic (Korber et al., 2020; Volz et al., 2020) and experimental evidence (Plante et al., 2020; Yurkovetskiy et al., 2020).Following the global dissemination of SARS-CoV-2 in early 2020 (Worobey et al., 2020), intercontinental travel dropped dramatically. Within Europe, however, travel and in particular holiday travel resumed in summer (though at lower levels than in previous years) with largely uncharacterized effects on the pandemic. Here we report on a novel SARS-CoV-2 variant 20E (EU1) (S:A222V) that emerged in early summer 2020, presumably in Spain, and subsequently spread to multiple locations in Europe. Over the summer, it rose in frequency in parallel in multiple countries. As we report here, this variant, 20E (EU1), and a second variant 20A.EU2 with mutation S477N in the spike protein accounted for the majority of sequences in Europe in the autumn of 2020.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3