Analysis of sequence-dependent interactions between transient calcium and transmitter stimuli in activating adenylyl cyclase in Aplysia: possible contribution to CS--US sequence requirement during conditioning.

Author:

Abrams T W,Yovell Y,Onyike C U,Cohen J E,Jarrard H E

Abstract

An important recent insight in a number of neurobiological systems is that during learning, individual dually regulated proteins with associative properties function as critical sites of stimulus convergence. During conditioning in Aplysia, the Ca2+ /calmodulin-sensitive adenylyl cyclase (AC) in mechanosensory neurons serves as a molecular site of interaction between Ca2+ and serotonin [5-hydroxytryptamine (5-HT)]-two signals that represent the CS and US in these cells. Conditioning requires that the CS and US be paired within a narrow time window and in the appropriate sequence. AC shows an analogous sequence preference: It is more effectively activated when a pulse of Ca2+ precedes a pulse of 5-HT than when the 5-HT precedes Ca2+. One mechanism that contributes to this sequence preference is that Ca2+/calmodulin binding to AC accelerates the rate of AC activation by receptor-Gs. We have identified two additional properties of AC activation that would cause pairing with Ca2+ preceding 5-HT to be more effective than simultaneous pairing or pairing with the reciprocal sequence: (1) Activation of Aplysia AC by a Ca2+ pulse rose with a delay compared with activation by a 5-HT pulse. (2) A late pulse of Ca2+, which arrived after 5-HT, acted, via calmodulin, to accelerate the decay of AC activation by receptor-Gs. Together, these activation properties of AC may contribute to the CS-US sequence requirement of classical conditioning.

Publisher

Cold Spring Harbor Laboratory

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3