Protein homeostasis from diffusion-dependent control of protein synthesis and degradation

Author:

Chen YupingORCID,Huang Jo-HsiORCID,Phong Connie,Ferrell James E.ORCID

Abstract

SummaryIt has been proposed that the concentration of proteins in the cytoplasm maximizes the speed of important biochemical reactions. Here we have used theXenopusextract system, which can be diluted or concentrated to yield a range of cytoplasmic protein concentrations, to test the effect of cytoplasmic concentration on mRNA translation and protein degradation. We found that protein synthesis rates are maximal in ∼1x cytoplasm, whereas protein degradation continues to rise to an optimal concentration of ∼1.8x. This can be attributed to the greater sensitivity of translation to cytoplasmic viscosity, perhaps because it involves unusually large macromolecular complexes like polyribosomes. The different concentration optima sets up a negative feedback homeostatic system, where increasing the cytoplasmic protein concentration above the 1x physiological level increases the viscosity of the cytoplasm, which selectively inhibits translation and drives the system back toward the 1x set point.

Publisher

Cold Spring Harbor Laboratory

Reference60 articles.

1. Universal scaling equation for self-diffusion by macromolecules in solution

2. Quantitative prediction of α in the scaling law for self-diffusion;Macromolecules,1988

3. Mathematical theory of the kinetics of the coagulation of colloidal solutions;Zeitschrift für Physikalische Chemie,1917

4. The nucleus serves as the pacemaker for the cell cycle;Elife,2020

5. Macromolecular crowding limits growth under pressure;Nature Physics,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3