Selective effects of estradiol on human corneal endothelial cells

Author:

Han Seoyoung,Mueller Christian,Wuebbolt Caitlin,Kilcullen Sean,Nayyar Varinda,Calle Gonzalez Brayan,Mahdavi Fard Ali,Floss Jamie C.,Morales Michael J.,Patel Sangita P.ORCID

Abstract

AbstractFuchs endothelial corneal dystrophy (FECD) results from genetic and environmental factors triggering mitochondrial and oxidative stress in corneal endothelial cells (CEnCs) leading to CEnC death and corneal opacification. FECD is more common in women than men, but the basis for this observation is unknown. Because FECD is commonly diagnosed around the time of the menopausal transition in women when estrogen levels decrease precipitously, we studied the effects of the potent estrogen,17-β estradiol (E2) on growth, oxidative stress, and metabolism in primary cultures of human CEnCs (HCEnCs) under conditions of physiologic 2.5% O2([O2]2.5) and under hyperoxic stress ([O2]A: room air + 5% CO2). We hypothesized that E2 would counter the stresses of the hyperoxic environment in HCEnCs. HCEnCs were treated ± 10 nM E2 for 7-10 days at [O2]2.5and [O2]Afollowed by measurements of cell density, viability, reactive oxygen species (ROS), mitochondrial morphology, oxidative DNA damage, ATP levels, mitochondrial respiration (O2consumption rate [OCR]), and glycolysis (extracellular acidification rate [ECAR]). There were no significant changes in HCEnC density, viability, ROS levels, oxidative DNA damage, OCR, and ECAR in response to E2 under either O2condition. We found that E2 disrupted mitochondrial morphology in HCEnCs from female donors but not male donors at the [O2]Acondition. ATP levels were significantly higher at [O2]2.5compared to [O2]Ain HCEnCs from female donors only, but were not affected by E2. Our findings demonstrate the overall resilience of primary HCEnCs against hyperoxic stress. The selective detrimental effects of hyperoxia and estradiol on HCEnCs from female but not male donors suggests mechanisms of toxicity based upon cell-sex in addition to hormonal environment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3