How Interactions During Viral-Viral Coinfection Can Shape Infection Kinetics

Author:

Pinky Lubna,DeAguero Joseph R,Remien Christopher H,Smith Amber M.ORCID

Abstract

AbstractRespiratory virus infections are a leading cause of disease worldwide with multiple viruses detected in 20-30% of cases and several viruses simultaneously circulating. Some infections with viral copathogens have been shown to result in reduced pathogenicity while other virus pairings can worsen disease. The mechanisms driving these dichotomous outcomes are likely variable and have only begun to be examined in the laboratory and clinic. To better understand viral-viral coinfections and predict potential mechanisms that result in distinct disease outcomes, we first systematically fit mathematical models to viral load data from ferrets infected with respiratory syncytial virus (RSV) followed by influenza A virus (IAV) after 3 days. The results suggested that IAV reduced the rate of RSV production while RSV reduced the rate of IAV infected cell clearance. We then explored the realm of possible dynamics for scenarios not examined experimentally, including different infection order, coinfection timing, interaction mechanisms, and viral pairings. IAV coinfection with rhinovirus (RV) or SARS-CoV-2 (CoV2) was examined by using human viral load data from single infections together with murine weight loss data from IAV-RV, RV-IAV, and IAV-CoV2 coinfections to guide the interpretation of the model results. Similar to the results with RSV-IAV coinfection, this analysis showed that the increased disease severity observed during murine IAV-RV or IAV-CoV2 coinfection was likely due to slower clearance of IAV infected cells by the other viruses. On the contrary, the improved outcome when IAV followed RV could be replicated when the rate of RV infected cell clearance was reduced by IAV. Simulating viral-viral coinfections in this way provides new insights about how viral-viral interactions can regulate disease severity during coinfection and yields testable hypotheses ripe for experimental evaluation.

Publisher

Cold Spring Harbor Laboratory

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3