Deep Learning Using High-Resolution Images of Forearm Predicts Fracture

Author:

Chapurlat Roland,Ferrari Serge,Li Xiaoxu,Peng Yu,Xu Min,Bui Min,Sornay-Rendu Elisabeth,lespessailles Eric,Biver Emmanuel,Seeman Ego

Abstract

AbstractImportanceFragility fractures are a public health problem. Over 70% of women having fractures have osteopenia or normal BMD, but they remain unidentified and untreated because the definition of ‘osteoporosis’, a bone mineral density (BMD) T-Score ≤ -2.5SD, is often used to signal bone fragility.ObjectiveAs deep learning facilitates investigation of bone’s multi-level hierarchical structure and soft tissue, we tested whether this approach might better identify women at risk of fracture before fracture.DesignWe pooled data from three French and Swiss prospective population-based cohorts (OFELY, QUALYOR, GERICO) that collected clinical risk factors for fracture, areal BMD and distal radius measurements with high resolution peripheral quantitative tomography (HRpQCT). Using only three-dimensional images of the distal radius, ulna and soft tissue acquired by HRpQCT, an algorithm, a Structural Fragility Score-Artificial Intelligence (SFS-AI), was trained to distinguish 277 women having fractures from 1401 remaining fracture-free during 5 years and then was tested in a validation cohort of 422 women.SettingEuropean postmenopausal womenParticipantsWe have studied postmenopausal women considered as representative of the general population, who were followed for a median 9.4 years in OFELY, 5.4 years in QUALYOR and 5.7 years in GERICO.Main outcome and measureAll types of incident fragility fracturesResultsWe used data from 2666 postmenopausal women, with age range of 42-94. In women ≥ 65 years having ‘All Fragility Fractures’ or ‘Major Fragility Fractures’, SFS-AI generated an AUC of 66-70%, sensitivities of 60-68% and specificity of 71%. Sensitivities were greater than achieved by the fracture risk assessment (FRAX) with BMD or BMD (6.7-26.7%) with lower specificities than these diagnostics (∼95%).Conclusion and relevanceThe SFS-AI is a holistic surrogate of fracture risk that pre-emptively identifies most women needing prompt treatment to avert a first fracture.Key PointsQuestionCan a deep learning model (DL)° based on high resolution images of the distal forearm predict fragility fractures?FindingsIn the setting of 3 pooled population-based cohorts, the DL model predicted fractures substantially better than areal bone mineral density and FRAX, especially in women ≥65 years.MeaningOur DL model may become an easy to use way to identify postmenopausal women at risk for fracture to improve fracture prevention.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3