ST3Gal1 synthesis of Siglec ligands mediates anti-tumour immunity in prostate cancer

Author:

Garnham Rebecca,Geh Daniel,Nelson Ryan,Ramon-Gill Erik,Wilson Laura,Schmidt Edward N,Walker Laura,Adamson Beth,Buskin Adriana,Hepburn Anastasia,Hodgson Kirsty,Kendall Hannah,Frame Fiona M,Maitland Norman,Coffey Kelly,Robson Craig N,Elliott David J,Heer Rakesh,Macauley Matthew,Munkley Jennifer,Gaughan Luke,Leslie Jack,Scott EmmaORCID

Abstract

AbstractImmune checkpoint blockade trials have yet to produce a robust anti-cancer response in prostate cancer patients as a monotherapy due to the immunosuppressed prostate cancer tumour immune microenvironment. ST3Gal1 and other sialyltransferases are implicated in cancer and immune suppression by synthesizing sialoglycans, which act as ligands for Siglec receptors. These checkpoints are important for the immune response. However, it’s unclear how the synthesis of Siglec ligands is regulated, and little is known about the role of sialoglycan-Siglec-axis in prostate cancer’s evasion of anti-tumour immunity. We report that ST3Gal1 levels negatively correlate with androgen signalling in prostate tumours. Utilising syngeneic mouse models, we demonstrate that ST3Gal1 plays an important role in modulating tumour immune evasion. Using mouse models, patient samples andin vitromodels we show that ST3Gal1 synthesises sialoglycans with the capacity to engage the Siglec-7 and Siglec-9 immunoreceptors preventing immune clearance of cancer cells. For the first time we provide evidence of the expression of Siglec-7/9 ligands and their respective immunoreceptors in prostate tumours. Importantly, we show that these interactions can be modulated by enzalutamide and may maintain immune suppression in enzalutamide treated tumours. We conclude that the activity of ST3Gal1 is critical to prostate cancer anti-tumour immunity and provide rationale for the use of glyco-immune checkpoint targeting therapies in advanced prostate cancer.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3